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The rigorous Dobrushin-Shlosman phase uniqueness criterion is reviewed, then 
applied to the hard square model to prove that only a single phase exists at 
activity z = 1.185. The criterion is violated (for a five-site by five-site lattice cell) 
at z = 1.35557, but this does not imply phase nonuniqueness. This work com- 
plements that of Dobrushin, Kolafa, and Shlosman, who proved phase uni- 
queness for all z ~< l. Certain "experimentally" discovered regularities are presen- 
ted as conjectures: one for a more general problem and two for the application 
to hard squares. Even with these regularities, however, substantial further 
improvements in the algorithmic implementation of the criterion will be 
required before it can become a practical toot for locating phase transitions. 

KEY WORDS:  Rigorous statistical mechanics; hard-square model; linear 
programming; Dobrushin-Shlosman phase uniqueness criterion. 

1. I N T R O D U C T I O N  

The problem of locating phase transitions is both important and difficult. 
The critical temperature of even the simple three-dimensional Ising model, 
for example, has not been located rigorously, although useful upper and 
lower bounds have been established. One method of establishing such 
bounds is through a "phase uniqueness criterion," i.e., a criterion which, 
when satisfied, guarantees that the system in question has only a single 
equilibrium phase. Since at temperatures below the critical temperature the 
Ising model exhibits two-phase coexistence, any temperature at which the 
system satisfies the uniqueness criterion is an upper bound on the critical 
temperature. In this paper we discuss a new phase uniqueness criterion, due 
to Dobrushin and Shlosman, ~1) and apply it to the hard square model. 
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Currently, the most important and successful phase uniqueness criteria 
are applicable only to ferromagnetic spins with pair interactions. Most of 
the phase uniqueness criteria applicable to general systems (such as the 
earlier criterion of Dobrushin (2)) have a serious limitation: If, at a given 
temperature, the system satisfies the criterion, then it is known to be in the 
single-phase regime. If, on the other hand, it fails to satisfy the criterion, 
then the test gives no information and, even worse, nothing can be done to 
improve matters. The new Dobrushin-Shlosman result escapes this 
limitation because the criterion is applied to an arbitrary subset of the lat- 
tice (the so-called "lattice cell"). If the criterion is satisfied, the system has 
only a single phase. But if it is not, the criterion can be applied again to a 
different (presumably larger) lattice cell. It has been conjectured that 
extending this process to ever larger cells will locate the transition 
exactly./~'3) (Dobrushin's earlier criterion ~2) is precisely the Dobrushin- 
Shlosman criterion applied to a cell of a single lattice site.) 

The Dobrushin-Shlosman criterion can thus in principle locate trans- 
ition points, but the question remains of whether it can do so efficiently 
enough to become a useful tool. An answer can be supplied only by testing 
the criterion on a non-trivial statistical mechanical system: we follow the 
lead of Dobrushin et  al. 14) and investigate the system of hard squares. I5) We 
find that despite the fact that this system is ideally suited for analysis by the 
phase uniqueness criterion, the transition location bounds obtained are in 
fact quite far from the true location, which is known to high precision from 
nonrigorous series analysis techniques. (6) 

An outline of the paper follows: Section 2 states (without proof) the 
Dobrushin-Shlosman criterion. In Section 3 we show how to apply the 
criterion using linear programming techniques with the assistance of a 
computer. Our tests have shown that such algorithmic implementations are 
far easier and faster than one might at first suppose, and we formalize this 
discovery as a conjecture. Section 4 applies the criterion to the hard square 
model. Once again unexpected regularities appear, and these are formalized 
into two conjectures. A summary of the hard square results and a general 
discussion of the prospective utility of the Dobrushin Shlosman criterion 
are given in Section 5. 

2. T H E  C R I T E R I O N  

The Dobrushin-Shlosman criterion is a precise refinement of the 
observation that the macroscopic state of a system with only one phase is 
insensitive to changes in the boundary conditions, while the state of a 
system in which two or more phases coexist can be very sensitive to such 
changes. [Consider, for example, an Ising model in zero field. At high 
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temperatures (and for large enough systems), the magnetization per spin 
vanishes whether the boundary consists of all up spins or of all down spins. 
But below the critical temperature, in the two-phase regime, flipping all the 
boundary spins from up to down will dramatically alter the system's 
character, as reflected by a change in the sign of the magnetization.] To 
turn this motivation into a mathematical tool, Dobrushin and Shlosman 
provide the following precise definitions. (The theorem applies to lattice 
systems with continuous or discrete variables at each lattice site. For 
simplicity, this paper treats only discrete variables.) 

A lattice cell V is a finite set of (usually contiguous) lattice sites. Their 
number is denoted I V[. 

The boundary of V, denoted ~V, consists of all those sites that interact 
with sites in V but are not themselves in V. Thus, the boundary of V for 
a system with nearest-neighbor and next-nearest-neighbor interactions 
is larger than the boundary of V for a system with nearest-neighbor 
interactions alone. 

The configuration of V will be represented by either i or j. The 
boundary condition, i.e., the configuration of the boundary ~?V, will be 
represented by either x or y. 

If the boundary c? V is in configuration x, then the probability that V is 
in configuration i is denoted p(i] x). Generally this probability will be a 
normalized Boltzmann factor, 

p(i i x) = e x p [ - H ( i  ] x)/kB T]/Z(x; T) 

where H(ilx) is the energy of configuration i with boundary x and 

Z(x; T) = ~ exp[ - H(ilx)/kB T] 

is a normalization factor. Hence p(ilx) will vary with the temperature T. 
The state (or, more precisely, the Gibbs state) of V is the function 

p(.lx). Note the distinction between microscopic configurations i, j and 
macroscopic states p(.lx). The states are probability distributions over the 
configurations. In general they vary with the boundary condition and with 
the temperature. 

In order to say whether a system is "sensitive" or "insensitive" to 
boundary conditions, we must be able to say whether the state changes a 
little or a lot as the boundary condition changes. In short, we need some 
sort of distance between states or, more generally, between probability 
distributions. The Dobrushin-Shlosman criterion uses the so-called 
Vasserstein distance. 7 (Also called the Kantorovich-Rubinstein Ornstein- 
Vasserstein metric: see Ref. 8 for a historical review.) 
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The Vasserstein distance between states is defined in terms of a simpler 
distance between configurations. This configuration distance d~j is simply the 
number of sites in V where the configurations i and j differ. The Vasserstein 
distance ~ [p ( - Ix ) ,  p(-lY)] between two states p(-Ix) and p(. l Y) is a linear 
combination of distances between configurations, weighted to increase the 
importance of the more probable configurations. The distance is 

N[P('lx), P([ y)]-min {~ wudo.} (1) 

where the minimization is performed over all joint probability distributions 
w~ such that 

~ wi/= p(ilx); ~ wo.= p(jt y); w(j>~O (2) 
/ i 

It is easy to verify that .~ satisfies the requirements for a distance: it is 
nonnegative (vanishing only if the two states are identical), commutative, 
and obeys the triangle inequality. !9) 

The maximum change in state that can be produced by altering a 
single boundary site t is 

k, = max {.~ [ p(. Ix), p(. L Y)] } (3) 

where the maximization is over pairs of boundary conditions x, y that 
differ only at site t. Phase uniqueness holds when such changes are small 
enough: 

T h e o r e m  (Dobrushin-Shlosman phase uniqueness criterion). If for 
some V 

k,< IVI 
t e # V  (4) 

then the infinite system has only a single equilibrium phase. 

The theorem is proved in Ref. 1. 

3. ALGORITHMIC  IMPLEMENTATION OF THE CRITERION 

Application of the Dobrushin-Shlosman criterion involves nothing 
more than arithmetic, but it involves so much arithmetic that recourse 
must be made to the computer. It is easy to produce algorithms that 
implement all aspects of checking the criterion except for one: the con- 
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strained minimization that defines the Vasserstein distance. The task of 
minimizing linear functions subject to linear constraints is called linear 
programming. (1~ In conformity with linear programming conventions, 
we now write ai for p(il x) and bj for P(Jl Y), so the Vasserstein problem is 
to minimize 

y clow, j (5) 
/} 

by varying the values wij subject to 

w u = ai; ~ w,j = bj; w~ ~> 0 (6) 
j i 

In this notation the problem will immediately be recognized (by a linear 
programmer) as an example of the "transportation problem." This problem 
usually arises in a context somewhat different from that of finding distances 
between probability distributions. Suppose a company owns a number of 
mattress factories, labeled by i, and a number of stores, labeled by j. The 
factory labeled i produces a; mattresses a day, and the store labeled j sells 
b~ mattresses a day. Total mattress production equals total mattress sales. 
The number of mattresses shipped daily from factory i to store j is w 0, and 
the unit cost of shipping on this route is d~. Constraints (6) simply require 
that each factory ships its entire production and that each store receives 
the amount it sells. The sum (5) represents the total cost for shipping 
mattresses, which the company clearly wishes to minimize. The origin of 
the term "transportation problem" should now be clear. 

The transportation problem is readily and efficiently solved by 
Dantzig's simplex algorithm. ~2) The general scheme of this algorithm is as 
follows (details are given by, for example, Murty: (1~ It starts by producing 
a set of variables {w~} that satisfies the constraints (6). It then applies a 
test to determine whether this set minimizes the sum (5). If so, the 
algorithm stops. Otherwise it alters the original variables w o in such a way 
that the constraints are still satisfied and the value of the sum is either 
decreased or remains constant: this alteration is called a "pivot." The new 
variables are then tested for minimization of the sum. The algorithm con- 
tinues pivoting and testing, pivoting and testing, until the test is passed, 
signaling that the minimum is found. 

A number of different starting techniques exist for producing the initial 
set of constraint-satisfying variables. Each technique has its own advan- 
tages and disadvantages, which depend upon the problem studied. When 
we tested several starting technique to find out which best suits our 
problem, we discovered that in each of thousands of trials one of them, the 
so-called "greedy method," produced variables wij that not only satisfy the 
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constraints (6), but also minimize the sum (5). It seems that if the greedy 
method is used, no pivoting is required! This is significant theoretically, 
because it reveals a hitherto unsuspected structure in the Vasserstein 
distance, and also practically, because pivoting and testing are time- 
consuming, complicated processes, whereas application of the greedy 
method is fast and easy. 

The greedy method ~1~ selects values for the w~j that surely satisfy the 
constraints but are also chosen with an eye toward minimizing the total 
cost (5). It does so by assigning as much "traffic" wij as the constraints 
permit to the route with the smallest unit cost d~j. After this assignment is 
made the problem can be formally reduced to a smaller transportation 
problem. The process is continued until all routes have been assigned. 
Specifically: 

G1. Select the smallest coefficient d4j in the transportation problem. 
If several such coefficients are equal, select one of them at random. Denote 
the corresponding values of i and j by I and J. 

G2. Assign wH=min{a / ,  b j}. 

G3a. I f  al<,b J, then: The constraint Zjwlj=az demands that we 
assign w(j= 0 for all j r  J. Form the smaller transportation problem by 
elminating all of the just-assigned routes (/, j) and by replacing b j  with 
h j  - -  a~. 

G3b. I f  b j<al  then: The constraint Z i w , j = b j  demands that we 
assign wij = 0 for all i r  Form the smaller transportation problem by 
eliminating all of the just-assigned routes (i, J) and by replacing a~ with 
al - b j .  

The method is called "greedy" (or sometimes "myopic") because it 
never looks ahead to see what might be gained by assigning traffic to 
routes not at the current minimum cost. In general, it will not minimize the 
total transportation cost (5). However, we believe: 

C o n j e c t u r e  A (Greed succeeds). The greedy method produces the 
minimum transportation cost (5) in the Vasserstein problem, for pairs of 
boundaries that differ at only one site. 

Our evidence for this conjecture rests upon thousands of tests on 
several different models: hard squares, zero-field square and triangular 
lattice Ising ferromagnets, triangular lattice Ising antiferromagnet (with 
and without field), random bond square lattice Ising model. Tests were 
applied to cells of various sizes and shapes and at various temperatures (or, 
in the case of hard squares, at various activities). Never did the greedy 
method fail to minimize the transportation cost. 
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There are a small number of transportation problems for which the 
greedy method has been proven to succeed. (13~ For example, if the pairs 
(i, j)  can be arranged in a sequence such that 

dpq + d,,s <~ dps + drq (7) 

whenever (p, s) and (r, q) fall after (p, q) in the sequence (the "Monge 
condition"), then the greedy method will succeed regardless of the values of 
the constraint coefficients ai, bj. Similarly, there is a condition on the 
constraint coefficients that will assure the method's success regardless of the 
cost coefficients d o . We have found that our problem satisfies neither 
condition, because changes made to either the cost or constraint 
coefficients will generally cause the greedy method to fail. 

4. A P P L I C A T I O N  TO H A R D  S Q U A R E S  

The Dobrushin-Shlosman criterion is undeniably correct, but its truth 
does not imply its utility. To see how well the criterion works in practice, 
we have applied it to the model of hard squares. (s) This model is easily 
specified: The sites of a square lattice are either occupied or unoccupied, 
but two nearest-neighbor sites cannot both be occupied. Because all con- 
figurations have zero energy, the concept of temperature is inapplicable 
and the macroscopic (thermodynamic) state of a hard square system is 
completely specified by a single variable, the activity z. This model is 
believed to exhibit a single critical transition at activity z c, showing phase 
uniqueness when z < z,, and two-phase coexistance when z > zc. A careful 
series analysis study (6J suggested that 

z~. = 3.7962 + 0.0001 (8) 

but, before the advent of the Dobrushin-Shlosman criterion, the only 
rigorous bound 114) on the transition activity was zc > 1/2. 

In many ways the hard square model is ideally suited to the 
Dobrushin-Shlosman criterion. The limiting factor in applying the criterion 
is the sheer arithmetic required to check every boundary of every 
configuration, and in the hard square model many configurations are flatly 
prohibited: for example, a five by five lattice cell can support 
225= 33,554,432 spin-�89 Ising model configurations, but only 55,447 hard 
square configurations. All but 0.16% of the Ising configurations are 
prohibited! Thus, it is not surprising that the first application of the 
Dobrushin-Shlosman criterion was to hard squares, when Dobrushin 
et al. ~4) (hereafter called DKS) used a three by four lattice cell to prove that 
zc > 1. (This bound is particularly interesting because it has implications 

822/'49/1-2-19 
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for the phase diagram geometry of the square-lattice Ising 
antiferromagnet.(4)) 

Let us pause to mention two important differences between the work 
of DKS and our own. First, DKS use an algorithmic implementation of the 
Dobrushin-Shlosman criterion that proves phase uniqueness over a range 
of activities rather than at a single value of z. They apply this technique to 
a number of abutting intervals in order to rigorously prove phase uni- 
queness throughout the interval 0 ~< z <~ 1. Although our implementation is 
also capable of proving uniqueness over intervals in the same way, we have 
in fact checked the criterion only at isolated activity points. (A proof of 
Conjecture C below would allow intervals of uniqueness to be determined 
accurately and easily without recourse to supplementary computations.) 
The second difference is that we find Vasserstein distances using the classic 
simplex algorithm as described in Section3, while DKS employ a 
specialized technique, which generates not the Vasserstein distance itself, 
but an upper bound only. 

Now that our attention is restricted to a single model, we can describe 
the Dobrushin-Shlosman criterion more precisely. First, recall that a 
"boundary condition" (or "boundary configuration") is a configuration of 
the sites immediately adjacent to the lattice cell V. A configuration i of V is 
called "compatible" with a boundary configuaration x when none of the 
sites occupied in i are adjacent to sites occupied in x. If n(i) is the number 
of sites occupied in configuration i, then the probability of finding the 
lattice cell in configuration i given that the boundary configuration is x and 
the activity is z is 

~z"(i'/Z(x; z) i f / i s  compatible with x 
p(ilx) = "~0 (9) otherwise. 

Here the normalizing factor Z(x; z) is the sum of z ''(j~ over all hard square 
configurations j compatible with boundary configuration x. 

Given these preliminaries, we can write down the following algorithm 
for applying the Dobrushin Shlosman criterion to hard squares. 

N].  Pick an activity z and a lattice cell V. 

H2. For all sites t in the boundary of V, perform steps H3 and H5. 

H3. For all boundary configurations with t vacant, perform step H4. 

N4. Calculate the Vasserstein distance between two states: one with 
the current boundary configuration and the other with a boundary 
condition identical except that site t is occupied. 

H5. Select the maximum such Vasserstein distance and call it k,. 

H6. Sum all the values kt. Apply the Dobrushin-Shlosman test (4). 
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For the sake of example, we can apply this algorithm to a three by 
four lattice cell. At z = 1 we find 

k , -  119,026_ 11.22357... (10) 
,~av 10,605 

whereas DKS produce only the upper bound 

k, < 11.99998 (11) 
t e O V  

Again, applying the algorithm at z = 1.074, we find 

k , =  11.996924 (12) 
t e O V  

This result was obtained via algorithm H using 30 sec of CPU time on the 
DEC-2060, a computer with a cycle time of 100 nsec. 

The time-consuming step in the hard square algorithm is H4, so it is 
important to optimize the preformance of this step. We noted in Section 3 
that the greedy algorithm, which assigns values to the variables wo starting 
with those of minimum distance du, appears to produce in every case the 
proper Vasserstein distance. This conjecture remains unproven, but DKS 
were able to show that the first stage of the greedy algorithm, namely the 
assigning of values to those w o. with dij = 0, is rigorously correct. (It is easy 
to see that this is true for the general case as well.) We have further proven 
the correctness of the second and third stages of the process, in which 
values are assigned to those w~ with d~ = 1 or 2. The simplification afforded 
by these improvements is considerable. For  example, in a three by four 
lattice cell the Vasserstein distance between the boundary with no sites 
occupied and the boundary with one corner-adjacent site occupied is found 
naively by solving a transportation problem with 35,295 variables and 382 
equality constraints. After the variables with d•=0 are eliminated the 
problem has 11,160 variables and 227 constraints, while after the variables 
with d o. = 1 and 2 are eliminated it has 1624 variables and 114 constraints. 

Even with these improvements step H4 is still time-consuming and, 
even worse, it must be executed once for every other boundary 
configuration, a number that grows exponentially with the number of sites 
in the boundary. Some of these boundaries can be eliminated from 
consideration through symmetry or other elementary arguments (see DKS, 
Section 4.2), but even so the remaining computational problem is large. It 
also seems pointless, as all but one of the computed Vasserstein distances 
are thrown away at step H5! If we could tell beforehand which boundary 
configuration would lead to the maximum Vasserstein distance, then we 
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would only need to execute step H4 once. With this in mind we have 
searched for patterns obeyed by the "maximizing" boundary condition. 
Throughout  our extensive tests, the following rule has never failed. 

C o n j e c t u r e  B (Maximizing boundary configuration). For  a rec- 
tangular lattice cell in the hard square model, the maximum Vasserstein 
distance between two states at the same activity and with boundary 
configurations differing only at site t is achieved when the boundary 
configuration 2 in which t is vacant has either all sites vacant or else only 
one site occupied. If the activity is small enough, then 2 is given precisely 
by: 

a. If t is adjacent to a lattice cell site which is itself adjacent to a 
corner site, then 2 is the configuration with only the site next to 
that corner occupied (see Fig. 1). 

b. Otherwise, 2 is the configuration with all sites vacant. 

The precise meaning of "small enough" in this conjecture is as yet uncer- 
tain. In our tests the conjecture held for all values of z less than or equal to 
10 (by comparison, z~ is about 3.8). We suspect that it applies for all values 
of z at which the Dobrushin-Shlosman criterion is satisfied. 

When conjecture B is adopted, the CPU time required to produce 
result (12) falls from 30 sec to 4 sec. 

4.1. Conjectured Formula for the Hard-Square 
Vasserstein Distance 

In this subsection we conjecture a simple formula for the Vasserstein 
distance between two given boundary configurations as a function of 
activity. If the conjecture is correct, then the entire domain of uniqueness 
ensured by a given lattice cell can be obtained by solving a few linear 
programming problems and by finding the zero of a simple polynomial. 

;g 

t 

Fig. 1. Conjecture B, part  a. The site labeled by the star is the only site occupied in 
boundary configuration 2. 



Dobrushin-Shlosman Phase Uniqueness Criterion 291 

Consider the problem of finding the Vasserstein distance between two 
hard-square lattice-cell states with different boundary configurations. 
(Usually we will be interested in this problem when the two boundary con- 
figurations differ at only a single site, but in this subsection we discuss the 
more general problem.) Equation (9) shows that the constraint coefficients 
(represented by ai and bj in Section 3) of this transportation problem are 
rational functions of z with integer coefficients. Now imagine implementing 
the greedy method to find a value for the sum (5), which, provided Conjec- 
tured A is correct, is the Vasserstein distance. Recall that each stage of the 
greedy method eliminates a row or column of variables wa to produce a 
smaller transportation problem. It is clear from step G3 that the constraint 
coefficients of this smaller problem are still rational functions, so step G2 
always assigns to wij a rational function of z. One is tempted to conclude 
that the Vasserstein distance produced by the greedy method is a rational 
function of z, but this is not necessarily correct. The rows and columns will 
generally be eliminated in a different order at each different value of z, so 
we may deduce only that the value for the sum (5) produced by the greedy 
method is a piecewise rational function of z. Indeed, one can easily find 
boundary conditions for which the Vasserstein distance is not a rational 
function of z. However, our tests indicate that: 

Conjecture C (Vasserstein distance is rational). For  a rectangular 
lattice cell in the hard suqare model, the Vasserstein distance between two 
states at the same activity z but with boundary configurations which differ 
at a single site is a rational function of z with positive integer coefficients. 

Further discussion of this result is presented in Ref. 15. 
For  small lattice cells it is easy enough simply to work out the 

Vasserstein distance and confirm the conjecture (DKS, Section 4.3). For  
larger cells it is not hard to keep track of the polynomial coefficients by 
computer. For  example, we conjecture that for a three by four lattice cell 
the Vasserstein distance between a state with all boundary sites vacant and 
a state with only a site next to the corner occupied is 

z + 10z 2 + 33z 3 + 46z 4 + 28z 5 + 6z 6 

1 + l lz+40z2+59z3+35z4+8zS+z6 (13) 

If Conjecture C were proven, then one could obtain the sum Z,r  k, 
as a rational function Nv(z)/Dv(z) [Nv(z) and Dr(z) polynomials],  and 
the Dobrushin Shlosman criterion (4) could be expressed as the simple 
polynomial inequality 

Nv(z) - I VI Dr(z) < 0 (14) 
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where I VI is the number of sites in the lattice cell V. Executing this 
program for the three by four lattice cell, for example, gives the criterion 

210z 16 + 4001z 15 + 31941z 14 + 140719z 13 + 374807z 12 + 606528z II 

+ 518795z 1~ - 6113z 9 - 591942z 8 - 780398z 7 - 566829z 6 

- 2 6 6 1 1 9 z 5 -  83705z 4 -  17511z3- 2334z 2 -  1 7 9 z - 6  < 0  (15) 

for phase uniqueness. [The polynomial vanishes for some z between 1.074 
and 1.075; compare Eq. (10).] One can easily show (using induction on the 
order of the polynomial) that a polynomial with a string of positive coef- 
ficients followed by a string of negative coefficients has exactly one positive 
zero. If Conjecture C is correct, then this zero is z*, the smallest activity at 
which the Dobrushin-Shlosman criterion fails. Furthermore, the criterion 
is satisfied for all z < z* and violated for all z >~ z*. 

5. R E S U L T S  A N D  C O N C L U S I O N S  

We have programmed a computer to apply the Dobrushin-Shlosman 
criterion to several rectangular hard square lattice cells. For each cell V the 
criterion was satisfied for all the tested activities below some value z* and 
violated for all the tested activities at or above z*. The results are 
summarized below: 

Lattice cell 3 x 3 3 x 4 3 x 5 4 x 4 
(16) 

z* 0.982+ 1.074+ 1.139+ 1.185+ 

(The plus signs indicate that, for example, when V is a three by four cell, 
the criterion is satisfied at z--  1.074 and violated at z--  1.075.) These results 
were obtained without recourse to the conjectures mentioned in Sections 3 
and 4. 

We would like to continue checking the criterion for even larger lattice 
cells, but checking even the four by four cell is already a large com- 
putational task. Realistically, the criterion can be applied to larger cells 
only by accepting a conjecture and hence sacrificing rigor. We have 
promulgated three conjectures: Conjecture A simplifies the computation of 
the Vasserstein distance, Conjecture B decides which boundary con- 
figuration gives rise to the value k, used in the Dobrushin-Shlosman test 
(4), and Conjecture C provides an easily evaluated analytic expression for 
k,. Which of these can be put to the most effective use? Virtually all of the 
computer time is devoted to solving the transportation problem. Our 
experience indicates that it takes as long to test a candidate solution for 
optimality as it does to produce the canditate using the greedy method, so 
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adoption of Conjecture A would halve the required computer time. 
Furthermore, since the greedy method produces a rigorous upper bound 
on k,, the criterion generates a rigorous proof of phase uniqueness even 
when the optimality test is omitted. Only the comfort of knowing that the 
algorithm has produced the best possible bound from the given lattice cell 
has been lost. 

In contrast, an algorithm that assumes Conjecture B produces lower 
bounds for k,, and hence can be used to show rigorously that the criterion 
is violated. An activity that violates the criterion is an upper bound for z*, 
and since z* is a lower bound on zc such a result can say nothing about the 
transition. But if we can accept this limitation, then the payoff from Con- 
jecture B is enormous. Only one transportation problem must be solved for 
each boundary site, whereas previously in, say, a five by five cell, about 10 
million transportation problems were required for each boundary site! 

Conjecture C is most useful in conjunction with Conjecture B. If 
Conjecture C is ignored, one must run the full program at several different 
activities in order to close in on z*. If Conjecture C is adopted, the 
transportation problems are solved but once, and then the value of z* is 
obtained in seconds by finding the zero of a polynomial. 

We extended the calculation to larger cells using this strategy: 
Conjecture A was not used at all. Conjecture C was used to find candidate 
values for z*, and these values were rounded upward to produce activities 
at which the criterion was expected to fail. This expectation was confirmed 
using Conjecture B. The resulting activities are shown below: since the 
criterion rigorously fails at these activities, they are upper bounds on Z*v. 

Lattice cell 4 x  5 5 x 5 

Upper bound on z* 1.268 1.35557 (17) 

The bound on z* for the five by five cell is our must computationally inten- 
sive result. It was obtained using 16 hr of CPU time on the Cyber 205, a 
supercomputer with a cycle time of 20 nsec. (We did not use extensively the 
vector arithmetic features of the Cyber 205, so it is possible that further 
improvements in CPU time can still be achieved.) Of these 16 hr, 4 hr was 
employed to find the Vasserstein function using Conjecture C, 4 hr was 
used to produce initial solutions of the transportation problems at 
z = 1.35557 using the greedy algorithm, and 8 hr was used to verify that 
these initial solutions were indeed correct. The bounds in (16) and (17) 
should be compared with the estimated (6~ transition activity zc = 3.796. 

One might object that none of the numerical statements in this paper 
[with the exception of Eq. (10)] are rigorous, because all of them were 
obtained using nonexact floating-point computer arithmetic. This objection 
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is in fact valid, but a technique exists that can overcome the objection. The 
technique involves replacing the computer's floating-point arithmetic with 
"interval arithmetic." In interval arithmetic the result of, say, a mul- 
tiplication is reported not as a single number that approximates the true 
product, but as a pair of numbers that rigorously bound the true product. 
One can (usually) produce rigorous bounds on Vasserstein distances by 
solving the relevant transportation problem subject to two precautions: 
first, by always keeping the exact integer polynomial form of the constraint 
coefficients (the ai and bj of Section 3) and second, by evaluating these 
polynomials using interval arithmetic. We have not carried out this 
ambitious program. However, we have applied interval arithmetic to the 
criterion (14), which applies to the five by five lattice cell, and we find that 
at z = 1.35557 the polynomial expression is rigorously positive. 

The Dobrushin-Shlosman theorem is the most powerful general phase 
uniqueness cirterion yet proven. It has opened up a fertile field of 
interesting new questions in both linear programming and statistical 
mechanics, as the conjectures set forth in this paper amply demonstrate. 
The hard square transition bounds obtainable through the criterion are 
without doubt the best rigorous bounds now available. Even so, however, 
these bounds remain far from the estimated transition activity, and were 
obtained only at enormous cost in computer time. This work has shown 
the Dobrushin-Shlosman criterion to be an important tool in rigorous 
statistical mechanics, but further improvements in the algorithmic 
implementation of the criterion will be required before it can compete with 
established nonrigorous methods in the practical location of phase trans- 
ition points. 

A C K N O W L E D G M E N T S  

We cannot overstate our debt to Prof. Joel L. Lebowitz, who 
suggested this project to us and who has been a constant source of 
encouragement and guidance. We must also thank Prof. M. Aizenman, 
J. Bricmont, R. Fernandez, A. Jaffe, J. Monroe, and B. Pollack~ohnson for 
informative discussions. J. Kolafa graciously shared his computer program 
with us. We thank J.-P. Eckman, M. Elrod, C. Gard, D. Rekant, and 
P. Wittwer for programming assistance. The Advanced Computational 
Methods Center at the University of Georgia, the Center of Information 
and Computer Science at Rutgers University, the Houck Computing 
Center at Oberlin College, and the John von Neumann Computing Center 
at Princeton, New Jersey have generously supplied the computer time that 
made this research possible. D.C.R. was supported by a Rutgers 
University supercomputer graduate fellowship and his attendance at the 



Dobrushin-Shlosman Phase Uniqueness Criterion 295 

University of Georgia's Summer Supercomputer Research Institute was 
supported by the National Science Foundation. It is a pleasure to 
acknowledge the financial support of the National Science Foundation 
through grant DMR-86-12369 to Rutgers University. 

REFERENCES 

1. R. L. Dobrushin and S. B. Shlosman, in Statistical Physics and Dynamical Systems, 
J. Fritz, A. Jaffe, and D. Sz~sz, eds. (Birkh~iuser, New York, 1985), pp. 347 370. 

2. R. L. Dobrushin, Theory of Probability and its Applications 15:469-497 (I070). 
3. R. L. Dobrushin and S. B. Shtosman, in Statistical Physics and Dynamical Systems, 

J. Fritz, A. Jaffe, and D. Sz~sz, eds. (Birkh~user, New York, 1985), pp. 371-403. 
4~ R. L. Dobrushin, J. Kolafa, and S. B. Shlosman, Commun. Math. Phys. 102:89 103 (1985). 
5. D. S. Gaunt and M. E. Fisher, J. Chem. Phys. 43:2840-2863 (1965). 
6. R. J. Baxter, I. G. Enting, and S. K. Tsang, J. Stat. Phys. 22:465-489 (1980). 
7. L. N. Vasserstein, Problem), Peredachi Informatsii 5:64-73 (1969). 
8. S. T. Rachev, Theory Prob. Appl. 29:647 676 (1985). 
9. R. L. Dobrushin, Theory Prob. Appl. 15:458-486 (1970). 

10. K. G. Murty, Linear Programming (Wiley, New York, 1983). 
11. J. Franklin, Methods of Mathematical Economics (Springer-Verlag, New York, 1980). 
12. G. B. Dantzig, in Activity Analysis of Production and Allocation, T. C. Koopmans, ed. 

(Wiley, New York, 1951), Chapter 23. 
13. A. J. Hoffman, in Surveys in Combinatorics 1985, I. Anderson, ed. (Cambridge University 

Press, Cambridge, 1985), pp. 97 112. 
14. L. K. Runnels and J. B. Hubbard, J. Star. Phys. 6:1-20 (1972). 
15. D. C. Radulescu and D. F. Styer, to be published. 


